If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-32x+125=0
a = 2; b = -32; c = +125;
Δ = b2-4ac
Δ = -322-4·2·125
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-2\sqrt{6}}{2*2}=\frac{32-2\sqrt{6}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+2\sqrt{6}}{2*2}=\frac{32+2\sqrt{6}}{4} $
| (4/x^2+3x-10)-(1/x^2+x-6)=3/x^2-x-12 | | 1/2(x-3)-1/3(2x+1)=6 | | p=125000/5000 | | 5–2k=-2k+1 | | x+-6=-54 | | -4y+19y+-16y+19y=-18 | | 5n+6=180 | | O-4y=20 | | 5x+8=8x+1 | | -12=x=-13-x | | 180=5n+6 | | -12+2x=-13-2x | | 3x/2=1-2x/4 | | 9-6x=-4x-3 | | 4x+8=7x+1 | | (t)=50−t/5 | | 12/1+q=1/3q+2 | | -6x+9=-4×-3 | | 1/2(4x-16)+8=12 | | 12+(x+5)=-3 | | -12+x=-14-x | | 4x+(25-8)=16+x | | 19+x=-11-x | | 5(3z-3)=30 | | 6/x-1/10=9/2x | | 29+x/12=-7 | | 9+7x=4+8x | | 12/1q=1/3q+2 | | 12/x+1=1/3x+2 | | 8w-39=-9(w-7) | | -6=-b/18 | | 2(x-6)=x-8 |